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Abstract
Rare diseases collectively exact a high toll on society due to their sheer number 
and overall prevalence. Their heterogeneity, diversity, and nature pose daunt-
ing clinical challenges for both management and treatment. In this review, we 
discuss recent advances in clinical applications of gene therapy for rare diseases, 
focusing on a variety of viral and non-viral strategies. The use of adeno-associated 
virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treat-
ment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector 
licenced for the treatment of refractory metastatic melanoma, will be an example 
of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will 
showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo 
production of chimeric antigen receptor T cells (CAR-T), licenced for the treat-
ment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral 
technology can be applied to autologous haematopoietic stem cells, exemplified 
by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe 
combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. 
Antisense oligonucleotide technologies will be highlighted through Onpattro 
and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) 
amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular at-
rophy (SMA). An initial comparison of the effectiveness of AAV and oligonu-
cleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, 
and Spinraza. Through these examples of marketed gene therapies and gene cell 
therapies, we will discuss the expanding applications of such novel technologies 
to previously intractable rare diseases.
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1   |   INTRODUCTION

This review outlines current gene therapy strategies 
to treat rare diseases (RDs). In-depth analysis or a full 
overview of the RD field is beyond our scope, but other 
reviews are available.1–3 Though definitions for RDs 
vary, the defining factor is low prevalence, typically 
<0.05%.1 There are nearly 10,000 RDs that cumulatively 
affect over 5% of the global population, about 400 mil-
lion people, thus exacting a high global health burden.4 
Their phenotype spectrum is extremely diverse, ranging 
from mild, for example, Inherited Macroglossia,5,6 to 
severe, for example, Huntington's chorea7,8 or adenos-
ine deaminase—severe combined immunodeficiency 
(ADA-SCID).9,10 Approx. 80% of RDs involve genetic 
alterations,11 and typically for each disease, there exist 
multiple different causative mutations with important 
implications for disease management. RDs also include 
some infectious diseases, such as Babesiosis,12,13 a tick-
borne infection.

The healthcare cost for RDs is high; they can be 
chronic, often have devastating consequences and ef-
fective treatments are lacking, typically translating into 
extensive and expensive symptomatic management, in-
cluding hospitalization. Undiagnosed RDs compound 
the problem. Without underlying cause identification, 
managing patient symptoms is inefficient and ineffective, 
worsening outcomes and increasing healthcare resource 
consumption.14–16 Cumulatively, in developed countries 
RDs account for ~10% of total direct healthcare spending 
for a patient population of 5%–7%.17,18

Research and development for disease treatments are 
expensive and protracted, regardless of patient numbers. 
For common diseases with a patient base of millions, they 
deliver value and can be funded largely by the patients 
themselves directly or indirectly. This is not the case for 
RDs whose patient base typically ranges from a few thou-
sands to a few hundred thousand but can be as low as a 
single patient. Treatment development for RDs may not 
be commercially viable, but the suffering and high health-
care costs imposed by RDs, make it worthwhile for gov-
ernments to step in. Initiatives such as the orphan drug 
designation status19–21 have been instrumental in incentiv-
izing pharmaceutical companies and spurring innovation.

As a group, the nature of RDs largely precludes small 
molecule therapeutics; functions of aberrant or miss-
ing genes are not readily replaced by other molecules. 
Successes, such as Imatinib for acute lymphoblastic leu-
kaemia (ALL) are exceptions.22 Biologic therapeutics such 
as protein supplementation can offer solutions but often 
fail to fully restore homeostatic balance, offering only 

partial symptom relief. Moreover, the development of one 
biologic agent benefits only modestly from work done on 
previous agents and their applicability is not universal. 
Haemophilia A,23,24 affects just one protein and is effec-
tively treated with recombinant Factor VIII. This is not 
the case for 47XXY (occasionally also 48XXYY) Klinefelter 
syndrome,25,26 a congenital X and Y chromosome dupli-
cation, which profoundly impacts global gene expression 
patterns. Its correction is beyond current technological 
capabilities leaving symptomatic management as the only 
option.

By contrast, nucleic-acid-based therapies are ex-
ceptionally well-suited to treat RDs, because (i) the 
nucleic-acid payload is interchangeable, so platform 
and delivery developments can benefit many different 
disease areas; and (ii) the internal homeostatic balance 
is more effectively restored, either permanently or tran-
siently depending on the technology used, to confer 
greater protection against the disease-inflicted damage. 
In brief, gene therapy promises more effective treat-
ments and a much more efficient therapeutic discovery 
process.

Here, we discuss current clinical development and 
practice of gene therapy for RDs. We focus almost exclu-
sively on treatments that have received regulatory ap-
proval and are being used in people affected, contrasting 
them to conventional therapeutics and illustrating the 
wider applicability of their platforms.

Originally envisaged as alleviating or curing disease 
by correcting defective genes, gene therapy has evolved to 
encompass several therapeutic interventions (Figure  1). 
Genetic defects can cause disease by abolishing, reducing 
or increasing the expression of one or more proteins, or 
by creating novel proteins with altered functions (gain-
of-function). The scale of these defects varies widely 
from point mutations to multi-nucleotide deletions or 
insertions, gene copy number variation and karyotypic 
alterations. Current technology limits gene therapy to 
individual gene defects, but recent advances have the po-
tential to correct larger scale abnormalities. To facilitate 
our study of the subject, we will divide our discussion of 
successful clinical applications of gene therapy into the 
following broad categories: 

1.	 Direct modification of somatic cell DNA in vivo.
2.	 Modification of DNA in differentiated somatic cells, 

prior to reimplantation.
3.	 Modification of DNA in stem cells, prior to 

reimplantation.
4.	 Manipulation of post-transcriptional RNA processing 

and translation with nucleic acid technology.
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2   |   DIRECT MODIFICATION OF 
SOMATIC CELL DNA IN VIVO

2.1  |  Gene supplementation in somatic 
and post-mitotic tissues: Luxturna AAV-
based gene supplementation treatment for 
LCA2

The absence of a functional copy of a gene, key to the 
function of a highly differentiated tissue (e.g. lung or 
eye) is a common cause of RDs. Such cases lend them-
selves to direct addition of a functional gene copy to 
cells of the target tissue. This is gene supplementation: 
delivery of DNA containing the gene of interest to the 
nucleus, while ensuring its expression and persistence 
therein (Figure 2). Viruses can be engineered into pow-
erful gene supplementation platforms. The basic prem-
ise is to create a custom viral genome with the gene of 
interest replacing viral genes and artificially package 
it into virions. These virions can transduce cells and 
deliver the target gene but cannot replicate or cause 
disease. As an example, we shall look at the recent suc-
cessful clinical use of viral vector technology in inher-
ited retinal dystrophies.

The retinal pigment epithelium-specific 65-kDa pro-
tein (RPE65) is an enzyme critical for the regeneration 
of 11-cis-retinal during the visual cycle27,28 (Figure  3). 
Without RPE65, 11-cis-retinal is depleted, leaving the 
photoreceptors unable to operate, while other interme-
diates in the metabolic pathway build up to potentially 
toxic levels. RPE65 mutations cause a spectrum of inher-
ited retinal dystrophies, which result in blindness at birth 
or very early childhood.27,28 The most common pheno-
types are Leber's Congenital Amaurosis29,30 and Retinitis 
Pigmentosa,31 but other rarer phenotypes are also possible 
depending on the RPE65 genetic defect.28

Replacement of RPE65 function in the patient's eye 
cannot currently be achieved by means other than gene 
therapy and is an attractive gene therapy target (see 
Figure 3). An intense research and development effort cul-
minated in the development of Voretigene neparvovec, an 
adeno-associated virus (AAV) RPE65 gene replacement 
platform.32–37 In 2017, it was approved by the US Food and 
Drug Administration (FDA), under the commercial name 
Luxturna for the treatment of type 2 Leber's Congenital 
Amaurosis (LCA2).38

Adeno-associated virus is a non-pathogenic com-
mensal Parvovirus,39–41 whose biology makes it suitable 

F I G U R E  1   The expanding Gene Therapy field. Originally gene therapy was envisioned as the in situ modification of genetic information 
of cells within tissues. The field has evolved beyond that encompassing more aspects of nucleic acid technology, particularly oligonucleotide 
technology, which aims to modify gene expression, without necessarily changing the cell's genetic information. The modification of a 
patient's cells ex vivo, outside the body prior to reimplantation has proven to be a successful clinical strategy. Although recent technological 
advancements have now enabled mitochondrial and germ line or embryonic cell gene therapy, these approaches are not yet being used due 
to safety and ethical issues.
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as a gene therapy platform (Figure 4). It is unable to exit 
its latent stage and begin its lytic cycle spontaneously, 
without superinfection by another virus.40,41 The natu-
ral AAV genome is capable of preferential site-specific 
integration into the host genome at chromosome 19, but 
it can also maintain itself for long periods of time in the 
cell nucleus episomally (as an extra-chromosomal ele-
ment).42–46 There are 12 different natural AAV variants 
in humans (referred to as serotypes), each with a unique 
type of capsid which controls their tropism,40,47 that is, 
the type of cells it can infect. Collectively, these vari-
ants confer upon AAV a very wide tropism, which can 
be further extended using non-human and genetically 
engineered variants.40

An AAV vector is created by flanking a transgene ex-
pression cassette capable of producing the transcript of 
interest with viral sequences called inverted terminal re-
peats (ITRs).40 The ITRs allow the viral structural proteins 
to package the transgene cassette into virions. These en-
gineered virions are typically produced by the expression 
of the ITR-transgene cassette in cells that are also made 
to express the viral structural genes, from an expression 
vector rather than the viral backbone. Supplying the struc-
tural genes in trans, with only the ITR-transgene available 

as the genome, allows packaging of the ITR-transgene, 
without including any of the structural genes in the vi-
rion and therefore with a much lower risk of producing 
live virus in the process. By removing the structural genes, 
AAV vectors can transduce to transmit the transgene, but 
cannot replicate and create new virions. Typically, the 
genes needed for site-specific integration of the AAV ge-
nome are not supplied during packaging and are not pres-
ent in the vector. AAV vectors, therefore, lack the capacity 
for site-specific integration and rely on episomal mainte-
nance, substantially reducing their potential genotoxicity. 
The downside of episomal maintenance is rapid loss of 
the viral genome in replicating cells, limiting the utility 
of AAV to somatic post-mitotic cells.40 An important con-
straint of AAV vectors is packaging capacity. AAV pack-
aging has a size limit of approximately 5 kbp, this being 
at the low end of what viral vector systems can offer (i.e. 
lentiviral vectors can carry 8 kb inserts, and high-capacity 
adenoviral vectors can include 37 kb). Considering all the 
elements (e.g. promoters, enhancers, regulatory domains) 
that need to be included, this is an important limitation. 
This size limitation is particularly salient for a second gen-
eration of AAV vectors that use the self-complementary 
strategy, but we will discuss that along with an example 
of a self-complementary AAV vector in Section 5.3. A key 
advantage of AAV vector systems is serotype switching, 
to alter vector tropism.40,48,49 Serotype switching involves 
packaging the vector with the capsid of the AAV variant 
most efficient at transducing the target cell population.

Until very recently LCA2 was both incurable and un-
treatable. The approval of Luxturna has brought new 
hope, not just for LCA2 but also for a host of other previ-
ously incurable retinopathies. Luxturna is an AAV2-based 
recombinant, non-integrating vector designed to deliver 
the RPE65 gene (Figure 5). In clinical trials, Luxturna was 
administered via subretinal injection into both eyes with 
a gap of 6–18 days.33,35–37 Patients treated with Luxturna 
showed a strong and durable improvement in visual acu-
ity 1 year after treatment. The visual field and the ability 
to perceive light also showed substantial improvements. 
Remarkably, patients from earlier phase 1 and 2 trials re-
tained most of this improvement for 3 years or more. Such 
changes can have enormous effects on the quality of life of 
affected people, taking them from near blindness to par-
tial sight.

The success of Luxturna has validated an entirely 
new therapeutic avenue for congenital retinopathies and 
other genetic afflictions of the eyes. Indeed, RPE65 mu-
tations account for only a small proportion of inherited 
retinopathies. Luxturna inspired an explosion in clini-
cal development for gene therapy products targeting the 
eye.34 Outcomes should start filtering through in the mid 
to late 2020s.

F I G U R E  2   Common gene supplementation strategies. 
(A) A gene of interest (GoI) can be incorporated into a 
chromosomal break, which may disrupt an existing gene, as the 
insertion point may be random. Examples include integrating 
viral vectors (RV, retrovirus vector; LV, lentivirus vector) and 
transposons. (B) Persistence of the new genetic material as an 
extrachromosomal element. Adeno-associated virus (AAV), 
adenovirus (Ad) and integration-deficient lentivirus vectors 
(IDLVs) are common examples. Without matrix-attachment region 
and sequences directing replication, the extrachromosomal element 
will be diluted out through cell division. (C) Homology-dependent 
repair (HDR) involves the targeted replacement of a host sequence. 
It is the safest method, yet also the hardest to harness.
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2.2  |  Gene therapy for solid tumours: 
Imlygic and HSV gene supplementation 
for melanoma

Cancer is a genetic disease, whose extreme heterogeneity 
makes it a virtual microcosm for the RD field. Collectively 
cancer is common, but with so many different cancers, in-
dividual types can be rare. The highly variable ontogenesis 
and resistance to conventional treatments means person-
alized medicine is very challenging and yet also a key pri-
ority. Gene therapy offers an attractive proposition: taking 
advantage of specific defects within a particular cancer 
to create engineered viral vectors selectively toxic to that 
cancer. The technology can then be readily repurposed to 
target other cancer types.

Melanoma is the fifth most common cancer in the 
United Kingdom, with an incidence of approximately 
25 per 100,000.50 It is very aggressive, with in situ mela-
noma quickly progressing to metastatic disease, at which 
point survival rates drop precipitously.50 Talimogene 
laherparepvec (Imlygic) is a licenced herpes simplex vi-
rus-1 (HSV1) gene therapy treatment for melanoma.51,52 
The lifecycle of herpes viruses is illustrated in Figure 6. 

Herpes viruses rely on key virulence factors that disrupt 
the interferon I pathway53 and antigen presentation to 
evade immunity54 and cause disease (Figure  6). In can-
cer, particularly melanoma, the same processes are often 
defective. Imlygic lacks these virulence factors, crippling 
its ability to infect normal cells, but leaving cancer cells 
highly vulnerable (Figure  7).51,55 Two additional modifi-
cations enhance Imlygic's anti-cancer potency: the virus 
expresses granulocyte-macrophage colony-stimulating 
factor (GM-CSF) during replication, plus is unable to 
undergo lysogeny, immediately activating the lethal lytic 
cycle (Figure 7).51,55

Imlygic performed well in clinical trials against stage 
III-IV melanoma, refractory to surgery.56–59 It increased 
the proportion of patients achieving durable disease re-
mission, increasing disease-free survival at 60 months by 
50%. Although Imlygic was ineffective against late-stage 
IV melanoma, it more than doubled overall survival in 
stage IIIB/B and IIIB-IVM1. Remarkably, almost all pa-
tients achieving complete remission remained disease-
free at the 5-year follow-up. In addition, it was found 
that Imlygic shows substantial synergy with checkpoint 
inhibitors.60,61

F I G U R E  3   The visual cycle in rod cells. The optical signal is generated by the opsin proteins with the help of 11-cis retinal (RAL), 
which absorbs light, changes to all-trans retinal and in the process activates opsin. All-trans retinal is no longer photosensitive and needs 
to be converted back to 11-cis RAL. This conversion is not carried out by the rod cells themselves but by the supporting retinal pigment 
epithelium (RPE). Trans-RAL is released from opsin and since it is membrane permeable it is transported with the help of special carrier 
proteins (interphotoreceptor retinoid-binding protein, IRBP) in the extracellular matrix to the RPE, where a series of specialized enzymes 
catalyse the conversion. The 11-cis-retinal product is transported back to the rod cells. Metabolic defects in the RPE enzymes block the 
conversion of 11-cis retinal and lead to accumulation of various intermediates such as retinol (ROL) esters, which can reach toxic levels. 
External supply of 11-cis retinal and removal of the intermediates via the blood is not sufficient to maintain vision.
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3   |   MODIFICATION OF 
DNA IN DIFFERENTIATED 
SOMATIC CELLS,  PRIOR TO 
REIMPLANTATION

3.1  |  Ex vivo gene therapy benefits and 
challenges

Ex vivo gene therapy is the genetic modification of cells 
outside the body, followed by transplantation. These cells 
could be differentiated somatic cells or stem/progeni-
tor cells.62 The main advantages of this ex vivo approach 
include the selective targeting of the cell population of 
interest, the avoidance of immune defences and the im-
plementation of quality control systems before the geneti-
cally modified cells are reimplanted. In this section, we 
will focus on differentiated somatic cells that retain suffi-
cient replicative capacity to allow extraction, modification 
outside the body and re-implantation.

3.2  |  Retroviral vectors for ex vivo 
gene therapy: chimeric antigen receptor 
(CAR) T cells

Retroviruses are enveloped single-stranded RNA viruses, 
whose life cycle involves converting their RNA genome 
into double-stranded DNA and stably integrating it into 
the host genome.63–65 Their RNA-containing capsid is sur-
rounded by a lipid bilayer derived from the host cell plasma 
membrane and containing the envelope protein, a trans-
membrane host cell invasion factor. Gammaretroviruses66 
and Lentiviruses67 are most used as viral vectors. Figure 8 
shows a brief summary of the retroviral/lentiviral life 
cycle. Retroviruses use special sequences called long termi-
nal repeats (LTRs) to direct packaging of their genome into 
virions.66,67 The LTRs contain signals facilitating several 
steps in the virus life cycle and act as powerful promoters. 
Retroviral vectors are made from an LTR-flanked transgene 
cassette by supplying the virus structural proteins in trans.

F I G U R E  4   The lifecycle of adeno-associated virus (AAV). AAV enters the cells via receptor-mediated endocytosis and then disrupts the 
endosome to escape into the cytoplasm. The capsid disassembles and simultaneously passes the viral genome onto nuclear pores facilitating 
nuclear entry. In the nucleus, the AAV genome, which is single-stranded, makes use of the inverted terminal repeats (ITRs) to become 
double-stranded. In the absence of a concomitant helper virus, AAV goes dormant, preferentially integrating into the MBS85 locus on 
Chromosome 19 in a site-specific manner that requires the AAVS1 genomic sequence. Superinfection with a helper virus reactivates AAV, 
allowing it to reproduce its genome and express its lytic stage proteins. Lysis of the cell by the helper virus helps AAV escape the cell.
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Retrovirus vectors are thus used to directly insert trans-
genes into the host genome. Although integration is pro-
miscuous, it is not random and integration patterns have 
been reported. For example, HIV prefers active transcrip-
tional units but integrates at similar frequencies across the 
gene.68 Although the promiscuity of the integration is po-
tentially problematic, it also ensures that the payload will 
be inserted in an area of active chromatin. Lentiviruses 
offer an additional advantage over other retroviruses. 
They can translocate their genome across the intact nu-
clear membrane and do not need to wait for cell division 
to access the host genome for integration. Lentivirus vec-
tors can thus transduce quiescent cells.67

Acute lymphoblastic leukaemia (ALL) is a malignancy 
of the lymphocyte progenitor cells that primarily affects 
paediatric patients.69 It is associated with a range of chro-
mosomal translocations in key oncogenes, such as PAX5 
and TCF3 and, in some cases, gain of function mutants, 
such as the BCR-ABL1 (Philadelphia translocation) and 
ETV6–RUNX1 rearrangements.70–72 The incidence of ALL 
is estimated at 10–20 cases per million.69 Unlike many 
other inherited cancers, ALL develops early in life mak-
ing it one of the most common paediatric cancers. B-cell 

precursor malignancies account for the bulk of ALL. 
Advances in chemotherapy and the understanding of the 
signalling networks that are disrupted by mutations in 
ALL, have led to the development of relatively effective 
chemotherapy regimens,73–75 but unfortunately, when pa-
tients relapse after treatment or even worse when initial 
responses are poor, the prognosis is typically bleak.76,77

Non-Hodgkin lymphoma (NHL) is one of the more 
common lymphoid tissue-derived cancers affecting the 
head and neck.78,79 It includes a highly heterogeneous 
group of malignancies that collectively have an incidence 
of approximately 1 in 10,000 in the European Union. 
Diffuse Large B-cell Lymphoma (DLBCL) accounts for 
between a quarter and a third of NHL incidence and it is 
highly aggressive.80,81 Familial forms of NHL have been 
characterized.82,83 Like ALL, effective treatment options 
are generally available for NHL, but refractory DLBCL has 
a very poor prognosis.80

The development of artificial T-cell receptors (TCRs) 
which target CD19, a surface marker of B-cell precursors 
that is strongly expressed in most B-cell lymphomas,84,85 
was a revolutionary advance (Figure 9). These chimeric re-
ceptors are constructed by joining together the signalling 

F I G U R E  5   Luxturna vector design and treatment protocol. Luxturna is produced by packaging an expression cassette for RPE65 into 
an AAV2 capsid. The RPE65 vector virions are harvested from cells transfected with the relevant plasmids, purified and a high-titre vector 
preparation is injected directly into the sub-retinal space. The vector will diffuse outwards and insert the gene into a large region of the 
retinal pigment epithelium, creating a new source of 11-cis-retinal. The transcellular nature of the 11-cis-retinal cycle allows the effects to 
spread more widely throughout the retina. The cassette design contains the genomic RPE65 sequence with all three exons and two introns. 
Efficient high-level expression is ensured by an artificial promoter/enhancer pair created by joining the chicken β-Actin promoter with the 
cytomegalovirus (CMV) enhancer and an artificial poly-adenylation sequence. The cassette is flanked by the AAV2 ITR sequences.
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apparatus of the TCR with parts taken from costimulatory 
molecules and a binding site against the target protein, in 
this case CD19.86–90 Anti-CD19 CARs target T-cells artifi-
cially to B cells. The CAR signalling steps are distinct from 
actual TCR signalling,91–95 vary depending on the type 
of costimulatory molecule used, and the immunological 
synapse formed is atypical. Nevertheless, the signals pro-
duced are sufficient to emulate T-cell receptor signalling, 
enabling the modified T-cells to attack and destroy targets 
expressing CD19 while bypassing the human leucocyte 
antigen (HLA) restriction.

Autologous CD19-CAR T-cells turned out to be 
highly effective in treating refractory NHL and ALL. 
The first two products approved for this purpose were 

tisagenlecleucel (Kymriah) and axicabtagene ciloleucel 
(Yescarta). Kymriah88,89 is a preparation of CD19-CAR 
engineered T-cells using the 4-1BB co-stimulatory domain 
and the CD8alpha transmembrane and hinge region. CD3-
positive cells (CD4 and CD8 T-cells) isolated from autolo-
gous blood are transduced, using a lentiviral vector, with 
a CD19-CAR transgene driven by the Elongation Factor-1 
promoter.88 After selection and expansion, the CAR-T 
cells are reinfused into patients that have undergone lym-
phocyte depletion treatment.89 Yescarta96–99 is prepared 
in a similar manner, except it uses the CD28 transmem-
brane/hinge region and co-stimulatory domain instead of 
CD8alpha/4-1BB. The vector is Retroviral and driven by 
the mouse stem cell virus (MSCV) promoter.99

F I G U R E  6   Herpes virus lifecycle. Herpes enter the cell by receptor-mediated fusion of their envelope with the plasma membrane. The 
viral genome is injected into the nucleus, where it circularizes to facilitate simultaneous replication (through a rolling circle mechanism) 
and viral gene transcription. The linear viral genome copies are exported to the cytoplasm and interact with newly synthesized capsid 
proteins. The complete virion is internalized into vesicles within the endoplasmic reticulum (ER) guided by the viral envelope protein that is 
inserted into the ER membrane. The enveloped virus is trafficked within the ER into the endosomes and eventually released by exocytosis. 
Two viral proteins are important in blocking host responses against the virus. ICP47 blocks the loading of virion peptides onto MHC class I, 
hindering cytotoxic T-cell recognition. ICP34.5 blocks protein kinase R (PKR), crippling the interferon pathway response to the virus.
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Kymriah is licenced for the treatment of refractory 
ALL and NHL/DLBCL, while Yescarta is only licenced for 
refractory NHL/DLBCL.100,101 Both help drive substantial 
remission rates in excess of 50%, whereas conventional 
treatments are largely ineffective.89,96 They can also have 
serious side-effects.102–106 Cytokine release syndrome is a 
potentially life-threatening complication capable of harm-
ing several major organs, including the nervous system 
via the IEC (immune effector cell) associated neurological 
syndrome or ICANS. A second distinct complication of 
CD19 cell elimination is predictably beta-cell aplasia and 
a collapse in blood immunoglobulin levels. This can po-
tentially predispose the patient to infections and must be 
managed to mitigate the risks.

The success of CAR-T technology in blood cancers 
has spearheaded substantial research on possible applica-
tions to solid tumours, a more challenging environment. 
Applications of gene therapy to cancer now account 
for around half the gene therapy treatments under 
development.107

F I G U R E  7   Talimogene laherparepvec (Imlygic) overall design. 
The herpes genome has two long inverted repeats (terminal and 
internal, TRL and IRL) and two inverted short repeats (IRS and 
TRS). It also has a long unique segment (UL) and short unique 
segment (US). In Imlygic, the promoters of the lytic cycle genes 
are altered for immediate activation, preventing lysogeny, ICP34.5 
is replaced with GM-CSF and ICP47 is deleted. Imlygic can only 
replicate effectively in cancer cells, where the interferon pathway 
and antigen presentation are compromised. Replication lyses the 
cancer cells and produces GM-CSF, enhancing immune destruction 
of the tumour.

F I G U R E  8   Retrovirus life cycle. Retroviruses and lentiviruses enter the cell via receptor-mediated fusion of their envelope with the cell 
membrane. In the cytoplasm, the viral capsid disassembles and genomic RNA (gRNA) is converted to a double-stranded (dsDNA) genome 
by reverse transcriptase (RT). The dsDNA genome is either transported through the nuclear pores by viral proteins (lentivirus) or enters 
the nucleus during cell division (gamma-retrovirus). In the nucleus, cyclization and episomal persistence or direct integration into the host 
chromosomes occur. Integrated dsDNA produces both viral transcripts and the gRNA genome. The viral particles are assembled in the 
cytoplasm. The envelope protein, which is inserted in the plasma membrane, directs budding of the assembled nucleocapsid out of the cell 
and acquisition of the viral membrane envelope.
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4   |   MODIFICATION OF DNA 
IN STEM CELLS,  PRIOR TO 
REIMPLANTATION

An alternative ex vivo approach targets stem/progenitor 
cells,62 which underpin the natural maintenance of or-
gans. This strategy is particularly suited to correction of 
genetic defects of the blood, which builds on the clinical 
experience of bone marrow transplantation.108–111

To illustrate the effectiveness of this approach, we will 
look at two clinically approved treatments for genetic dis-
eases affecting blood cells, Strimvelis for ADA-SCID and 
Zynteglo for β-thalassaemia.

4.1  |  Severe combined 
immunodeficiency: Strimvelis HSC 
gene therapy

Severe combined immunodeficiency is a heterogenous 
group of genetic disorders that cause complete or nearly 
complete impairment of T-lymphocyte function, com-
bined with primary or secondary dysfunction in other im-
mune cell types.112 The SCID spectrum is very rare, with 
a prevalence of approximately 1 in 60,000 live births.113 
The complexity of T-lymphocyte ontogenesis explains the 

extensive genetic heterogeneity of SCID. There are cur-
rently 16 known causative genes and over 20 separate de-
fects.114,115 The most common mutations are in X-linked 
IL2 receptor components (SCID-X1).

Adenosine deaminase-severe combined immunodefi-
ciency is another common form and one of the most dam-
aging.116 The Adenosine Deaminase enzyme is essential 
for the purine salvage pathway that regulates the purine 
nucleotide balance. ADA activity is important in prevent-
ing adenine nucleotide accumulation. Lack of ADA results 
in a marked imbalance in the dNTP pool, compromising 
DNA polymerase function.117–119 In rapidly or continu-
ously proliferating cells the result is genotoxic shock and 
apoptosis,120,121 and the lymphoid cell differentiation path-
way is particularly sensitive to ADA deficiency.116,122,123 
ADA deficiency also impacts cAMP synthesis, disrupting 
general cell signalling and giving rise to a more diffuse pa-
thology, in most other tissues including the brain.124

Adenosine deaminase-severe combined immunodefi-
ciency can be treated by allogeneic haematopoietic stem 
cell (HSC) transplantation10,125 and PEGylated ADA (PEG-
ADA).10,126 PEG-ADA has a long plasma half-life and can 
help reduce intracellular adenine build-up, by keeping ex-
tracellular levels low and facilitating transporter-mediated 
efflux, alleviating some of the worst symptoms.10 Bone 
marrow transplantation is limited by the availability of 
HLA-matched donors and by the risk of graft-versus-host 
disease (GVHD) with allogeneic donors.127

A gene therapy option for ADA-SCID has been li-
cenced by the European Medicines Agency (EMA) in the 
European Union (EU). Strimvelis is a preparation of autol-
ogous HSCs, engineered to express functional ADA.128–131 
CD34-positive HSC cells are isolated from the person af-
fected and expanded using a cocktail of soluble mediators: 
FLT3L, KITL/SCF, THPO, IL3, and IL6 (FKT36). In this 
proliferative state, the cells are transduced with a func-
tional ADA copy using an amphotropic Murine Moloney 
Leukaemia virus vector,132 whose 4070A envelope gene, 
targets Pit-2 and mediates efficient transduction of 
HSCs.133 The transduced HSC pool is re-infused after non-
myeloablative conditioning with anti-proliferative agents 
such as busulfan to suppress the proliferation of endoge-
nous HSCs.

Strimvelis has performed exceptionally well in clini-
cal trials.131,134,135 A follow-up of 18 people treated with 
Strimvelis at a very early age revealed that all of them 
survived (follow-up 2–13 years, median 7 years), and they 
were well enough to resume normal social interactions. 
Several of the patients were able to return to school. In 
those who could be evaluated ADA expression reached or 
exceeded 10% normal and remained stable in all myeloid 
and lymphoid cells, immune function was successfully 
reconstituted and a response to antigen challenge could 

F I G U R E  9   The chimeric antigen receptor (CAR) design. The 
artificial T-cell receptor (TCR) is made in a modular manner by 
combining the following parts: the CD3ζ signalling domain from 
the TCR, a transmembrane and hinge region and co-stimulatory 
domains from receptors that are needed for TCR signalling, such 
as CD8, CD28 and 4-1BB (CD137), and a single chain variable 
fragment (scFv) targeted against the protein of interest. This 
creates a receptor capable of generating a full TCR signal upon 
binding of the scFv target. The CAR is thought to become activated 
by dimerization or multimerization allowing cross-interaction 
between the signalling domain of one CAR molecule with the 
co-stimulatory domain of another. This drives CAR activation, 
creating a CD3 signal and activating other accessory receptors, 
particularly the IL2 receptor.



164  |      PAPAIOANNOU et al.

be observed. The rate of infection decreased dramati-
cally, and the recipients managed to resolve infections 
in most cases. In almost all cases PEG-ADA treatment 
could be discontinued. Intervention-free survival re-
mained above 80%. These results match autologous HSC 
transplantation and compete very favourably with all 
other treatments.

Successful reconstitution of the T-cell population does 
not eliminate the complete health impact of ADA-SCID, 
since it does not replace ADA function in cells of a non-
haematopoietic linage, but it effectively provides (via ex-
pression in red blood cells) a ready pool of plasma ADA 
that can serve the same function as PEG-ADA. At the same 
time, it eliminates the supply issues with donor-matched 
HSC transplantation and the risks associated with alloge-
neic transplantation (e.g. GvHD).

4.2  |  β-Thalassaemia gene therapy with 
Zynteglo HSCs

Beta-thalassaemia is one of the most common genetic 
anaemias.136,137 It is autosomal recessive, with a highly 
variable distribution. Its prevalence approaches 1 in 
1000 live births in areas where malaria is currently en-
demic or was endemic in the recent past but is very rare 
elsewhere. Globally, prevalence is close to 1:100,000 live 
births.

The disease phenotype depends on the exact genetic 
defect in the HBB (adult β-globin) gene, a subunit of hae-
moglobin. Homozygous inheritance of an allele that pro-
duces no functional protein causes β-thalassaemia major 
and severe life-threatening anaemia.136,137 Homozygous 
inheritance of a partial loss of function mutant leads to 
β-thalassaemia intermedia and milder disease.

Beta-thalassaemia has all the typical hallmarks of 
anaemia136,137 including fatigue, weakness, and palpita-
tions. The major disease also leads to muscle cachexia, 
skeletal and cartilage deformities, osteoporosis and sple-
nomegaly. Regular blood transfusions can address most of 
these symptoms, but they generally also cause iron over-
load, leading to heart, liver and endocrine complications.

Recently an ex vivo gene therapy approach, 
Zynteglo138–141 was licenced for the treatment of severe, 
transfusion-dependent, β-thalassaemia. The patient is 
treated with G-CSF and a CXCR4/SDF-1 antagonist, 
which leads to substantial proliferation and mobili-
zation of HSCs from the bone marrow into the blood. 
CD34-positive HSCs are collected from the blood and 
transduced in the laboratory with the BB305 lentiviral 
vector, which contains a mutated HBB (T87Q).142,143 
The BB305 lentiviral vector has a self-inactivating de-
sign, which removes the transcriptional activity of the 

LTR. It includes the entire HBB coding sequence with its 
native control elements: the β-globin promoter,144 its 3′ 
enhancer145 and selected fragments from the upstream 
locus control region,146 facilitating high-level expres-
sion. The T87Q variant confers enhanced anti-sickling 
activity and can be differentiated chromatographically, 
serving as a biomarker.147 The patient is conditioned 
with myelosuppressive drugs to facilitate donor cell en-
graftment prior to infusion of the corrected HSCs.

Like Strimvelis, Zynteglo was highly successful in clin-
ical trials.138–141 The majority of patients showed long-
lasting improvement in haemoglobin levels and were able 
to stop blood transfusions. Most patients that could be 
evaluated for over a year, achieved near normalization of 
haemoglobin levels and blood transfusion independence.

5   |   GENE THERAPY THROUGH 
MANIPULATION OF POST-
TRANSCRIPTIONAL RNA 
PROCESSING AND TRANSLATION

Gene expression levels can be modulated after transcrip-
tion using synthetic nucleic acid molecules able to interfere 
with splicing, translation or RNA degradation, without 
directly altering the cell's genetic material (Figure 10).148 
Diseases resulting from gain-of-function mutants are par-
ticularly amenable to this intervention method.

Control of RNA levels within the cell occurs through 
RNA interference,148–150 which uses endogenous (e.g. 
miRNA) or exogenous (e.g. siRNA) double-stranded RNA 
templates, to target specific mRNA sequences for degrada-
tion. Artificially produced RNA molecules (short hairpin 
RNAs, which are artificial miRNA mimics151,152) can be 
used to hijack this system and selectively target mRNA 
molecules for degradation153,154 (Figure 11).

Antisense oligonucleotides (ASO) are short nucleic 
acid sequences designed to base pair with a specific RNA 
target within the cell.148 Typically, ASOs consist of mod-
ified nucleotides with increased stability, and frequently 
include artificial nucleotide analogues, such as morpholi-
nos155 and locked/bridged nucleic acids.156 ASOs can ma-
nipulate the post-transcriptional fate of mRNA in various 
ways,157 but here we will mostly focus on RNase H target-
ing (Figure  11). Splice-switching oligonucleotides (SSO) 
are designed to base pair with splicing sites, or splicing 
enhancers/suppressors within a pre-mRNA sequence 
and direct alternative splicing of the target gene.158 RNA 
ASOs designed to base pair with sequences within the 5′ 
or 3′ untranslated region (UTR) can suppress or enhance 
mRNA translation.159,160

Here, we will discuss some key examples of RNA 
interference and SSO-based therapeutics that have 
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recently cleared clinical trials and are now being used to 
treat rare diseases. In particular, we will look at familial 
transthyretin amyloidosis (FTA) and spinal muscular 
atrophy (SMA).

5.1  |  Familial transthyretin amyloidosis: 
Onpattro RNAi and Tegsedi ASO

Familial transthyretin amyloidosis is a rare genetic disease 
of the Transthyretin (TTR) gene that causes the protein to 
misfold.161–163 The misfolded protein forms amyloids that 
deposit into and damage tissues. This is a slow gradual 
process, so the symptoms typically begin in adulthood. 
The exact onset age is variable and correlates with disease 
progression. The peripheral nervous system is particularly 
vulnerable, so neuropathies are among the earlier symp-
toms, but as the disease progresses, eyes, kidney, heart, 
and CNS typically become involved. FTA is eventually 
fatal on average 10 years after the onset of symptoms, with 
a younger onset being associated with more aggressive 

disease. The prognosis in patients presenting with early 
cardiac involvement is extremely poor. Few patients sur-
vive for longer than 5 years.

Genetically, FTA mutations are autosomal dominant, 
but progression and penetrance vary depending on the 
exact genetic defect.161 Most patients are heterozygotes. 
The global prevalence of FTA is of the order of 1 in 
10,000,164 though clusters have been observed within cer-
tain ethnic groups or populations, such as in certain areas 
of Portugal, Sweden, Japan, and West Africa.162,164

The current gold standard treatment for FTA is liver 
transplantation161–163 since the liver is a major source of 
TTR. Liver transplantation arrests the development of 
polyneuropathies and slows but does not prevent progres-
sive degeneration of the eyes, heart, and kidney.

In the last few years, the FDA has approved two 
oligonucleotide-based therapeutics for FTA: Patisiran 
(Onpattro)165 and Inotersen (Tegsedi).166 Onpattro167,168 is 
a stable nucleic acid lipid particle (SNALP) formulation 
containing short interfering RNA (siRNA—Figure  11) 
against TTR. Onpattro is a new generation of siRNA, using 

F I G U R E  1 0   Post-transcriptional control of gene expression in eukaryotic cells. The first control point is during splicing. Splicing in 
eukaryotic cells is controlled by a series of splicing site elements and factors, and more than one product can be produced from the same 
gene. The splicing factors expressed by the cell determine the splice variant balance. The mature RNA is further regulated by degradation. 
A special protein complex recognizes double-stranded RNA and then uses it as a template to degrade matching mRNA molecules. This 
mechanism (RNA interference) allows the cell to fine-tune gene expression, by producing special RNA molecules (micro-RNAs or miRNA). 
Splicing and RNA interference can be controlled using artificial oligonucleotides. The final control point is binding to the ribosome and 
translation initiation.
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DNA overhangs (dTdT), instead of RNA (UU), increasing 
RNA resistance for a longer lasting effect. In addition, 
Onpattro has most of the U and C residues methylated in 
the sense strand, to promote incorporation of the siRNA 
correct strand into the RISC (RNA-induced silencing com-
plex) assembly. Onpattro is designed to target the 3′ UTR 
of the TTR transcript and will suppress expression of both 
mutant and wild-type forms. This is desirable because 
once misfolded aggregates are formed, they can induce 
misfolding and deposition of even the wild-type protein.

The Onpattro SNALP's formulation169 consists of a 
1:1 mixture of cholesterol and phospholipids. The phos-
pholipids have a strong positive charge (4:1 ratio of cat-
ionic to neutral) to facilitate complex formation with 
the siRNA. 5% of the cationic phospholipids used have 
a PEG2000 (polyethylene glycol 2000 MW) polymer at-
tached to them, creating a sheath that greatly prolongs 
SNALP plasma half-life. Lipid nanoparticles in the plasma 
are typically decorated by ApoE, despite the PEG sheath, 
and only extravasate effectively in tissues with fenestrated 
endothelium170,171; thus, they naturally target the liver. 
After ApoE-directed internalization, charged interaction 

between the positive SNALP and negatively charged en-
dosomal membrane, mediates endosome escape, deliver-
ing the siRNA to the cytoplasm. The long SNALP half-life, 
and the longevity of the primed RISC assembly, allow the 
effect to persist over several days.

Onpattro is highly effective at suppressing TTR expres-
sion. During clinical trials,167,168,172 it was found that ex-
pression is reduced by >70% within 5 days and remains 
below that threshold for at least 20 days. Infusion of 
Patisiran every 3 weeks over 18 months halted progression 
in virtually all patients that achieved sustained TTR sup-
pression. Small but significant improvements were also 
seen in the polyneuropathy and cardiomyopathy aspects 
of the disease. Adverse reactions to Onpattro are primarily 
related to infusion of the liposomal formulation. Serious 
adverse effects were rare.

Tegsedi173,174 is an RNaseH-dependent GAPmer ASO 
formulation (Figure  11) also targeting the TTR 3′UTR. 
The inner DNA core has phosphorothioate linkages175 
that make it strongly resistant to degradation but can 
also cause toxicity.176–178 To mask the phosphorothioate 
toxicity, the central core is flanked on either side by five 

F I G U R E  1 1   Oligonucleotide control of gene expression. (A) siRNAs are duplex RNA molecules made from two complementary 20–21 
nt strands designed to leave 1–2 nt overhangs on the 3′ side after annealing. The Dicer protein complex processes siRNAs and incorporates 
one of the strands and degrades the other based on their physical properties. Any mRNA sequence that can base pair with the chosen strand 
is degraded. Artificial siRNA molecules are designed to force selection of the non-coding strand. (B) Another design is gapmer antisense 
oligonucleotides (gASOs), which consist of a DNA core flanked by artificial nucleotides. The artificial nucleotides are nuclease resistant 
and have a high affinity for RNA. When the gapmer ASO anneals to its target RNA, the DNA core forms a DNA/RNA heteroduplex, thus 
recruiting RNaseH and marking the target RNA for degradation. The resistance of gASOs to nucleases allows for cytoplasmic persistence 
and durable responses.
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2′-O-methoxyethyl ribonucleotide residues, which are 
also resistant to degradation.174 The entire 20-mer oligo-
nucleotide is complementary to the target sequence in 
the TTR 3′UTR and stable enough to deliver via intra-
muscular injection of a preparation in saline, without 
a liposomal formulation. The ASO makes its way into 
the circulation and is actively taken up by cells in vari-
ous tissues, with the liver being a primary site. During 
clinical trials,173,174 patients received three injections of 
Inotersen in the first week, followed by weekly injections 
for a period of 64 weeks. At the end of the first-week 
plasma TTR levels reduced by ~70% and remained at 
that level for the entire 64-week period. Like Onpattro, 
Tegsedi effectively halted disease progression over the 
entire treatment period, albeit with variations between 
different patient groups.

The ability to control gene expression levels is vital 
in shutting down gain-of-function mutants. Like other 
nucleic-based therapies, once the delivery method is 

optimized, it can be repurposed for any payload. For ex-
ample, research into liposomal siRNA delivery paved the 
way for the SARS-CoV2 mRNA vaccines, by BioNTech 
and Moderna.179,180

5.2  |  Spinal muscular atrophy: Spinraza 
splice-switching oligonucleotide

Spinal muscular atrophy is the most common cause of 
genetic death in childhood with a prevalence of approxi-
mately 1 in 10,000 live births.181,182 It is caused by loss-
of-function mutations in the survival motor neuron 1 
(SMN1) gene.183 It is autosomal recessive and the severity 
of the phenotype inversely correlates with the copy num-
ber and expression level of the highly related, but only 
partially functional, SMN2 gene.184–186 SMA is a systemic 
disease, due to SMN being ubiquitously expressed, but the 
lower motor neurons are particularly sensitive to loss of 
SMN function.187

SMN2 differs by a few nucleotides from SMN1.181,184,188 
Crucially, it is spliced differently, with 85%–90% of the 
transcripts typically skipping exon 7. The truncated pro-
tein isoform is unstable and rapidly degraded. SMN2 
proved to be pivotal in developing an oligonucleotide-
based therapeutic for SMA. Nusinersen (Spinraza) is an 
SSO designed to prevent the excision of exon 7 from the 
SMN2 gene product, increasing the production of full-
length, stable SMN protein from it.189 The 20-mer SSO 
oligo is made from 2′-O-methoxyethyl (2MOE) ribo-
nucleotides,190 which resist degradation and base-pair 
more efficiently,191 enhancing intronic splicing silenc-
er-N1 (ISS-N1) inhibition. The oligo is injected directly 
into the spinal cord via lumbar puncture.192 Initially, a 
small number of frequent injections are given to quickly 
establish a steady state, followed by maintenance doses 
that are more infrequent. In the most recent clinical 
trial192 the conditioning regime is three bi-weekly doses, 
followed by a maintenance regime with 4 months be-
tween doses. Spinraza has proven highly efficacious in 
infantile-onset SMA (type I),193–195 producing dramatic 
improvements in survival and motor milestone achieve-
ment, with some infants developing skills never seen 
in the natural history of this disease. The incidence of 
adverse events was high, but mostly related to the com-
plex spinal injection procedure in this vulnerable patient 
population.

Onpattro, Tegsedi, Spinraza and other examples repre-
sent important milestones for the oligo therapeutics field, 
by demonstrating that it is possible to exert sustained, ef-
fective, direct control over gene expression without stable 
genetic modification.

F I G U R E  1 2   Generation of self-complementary AAV vectors. 
AAV variants with faster expression kinetics can be produced 
through the use of a mutated ITR (blue, right), to frustrate terminal 
resolution. As a result, the two strands fail to separate, leaving 
them joined through the mutant ITR. The complete viral genome 
is still flanked by normal ITRs, therefore it can be replicated 
and packaged. Once released in the host cell the two strands can 
reanneal to form the structure marked with (*). This structure does 
not rely on second-strand synthesis to stabilize it within the cell 
and initiate transgenic expression.
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5.3  |  A gene therapy comparison of 
oligonucleotides versus viral vectors: 
Spinraza versus Zolgensma

The existence of a viral vector gene therapy alternative 
to Spinraza offers a unique opportunity to directly com-
pare the effectiveness of the two approaches. Zolgensma 
(Onasemnogene Abeparvovec)196–200 is an AAV-based 
gene supplementation treatment aimed at directly and 
permanently restoring SMN1 expression with a single 
dose. The design of the Zolgensma expression cassette 
is similar to Luxturna (Figure  5), in using the hybrid 
CMV–Chicken beta actin promoter to drive the expres-
sion of SMN1 cDNA. To enhance expression, the design 
incorporates an artificial intron (from SV40) and codon 
optimization. The sequence of AVXS-101 (the vector for 
Zolgensma) is proprietary and the exact optimizations 
are not in the public domain, but the effectiveness of 
this approach was documented by using a similar AAV9 
platform.201–203 A self-complementary design (Figure 12) 
was employed, where one of the flanking ITRs was a spe-
cially engineered variant to synthesize genome dimers, 
rather than monomers.204 This design is advantageous 
in that it can speed up transgenic expression without the 
need for DNA synthesis, a possible rate-limiting step for 
single-stranded AAV vectors.

Zolgensma performed very well in clinical tri-
als,196–200,205 showing both a high response rate and sub-
stantial symptom alleviation. In the SPR1NT phase 3 trial, 
all 14 participants achieved the primary endpoint of sitting 
unaided, while 11 and 10 out of 14 managed to stand and 
walk respectively. None of the 23 untreated SMA patients 
achieved these developmental milestones. Impressively, 
a substantial number of children (40%–80% depend-
ing on the endpoint), reached the milestones within the 
regular developmental time. Motor assessment showed 
that all children improved rapidly after administration 
and reached at least 80% of the normal score. Typically, 
SMA children achieve on average 40% of the normal score 
and their scores decline, rather than improve with age. 
All children managed to avoid the need for mechanical 
ventilation during the study and 13 children were spared 
the need for assisted feeding. This was confirmed by 
other studies, which also found that the gains were du-
rable. These results compare favourably with Spinraza. 
Indeed, Bitetti et al.205 investigated children previously 
treated with Spinraza and found that Zolgensma helped 
the children make further gains, with the greatest bene-
fits in children that had responded less well to Spinraza. 
An important factor in this improved response is likely to 
be the systemic treatment provided by Zolgensma, while 
Spinraza is delivered by intrathecal injection, with direct 
beneficial effects expected to be restricted to the CNS.

Although the evidence so far points to a higher efficacy 
and response rate for Zolgensma compared with Spinraza, 
safety concerns with the use of AAV9 use have emerged. 
Two common serious adverse events have been observed, 
hepatotoxicity and thrombocytopenia. Although these 
adverse effects proved self-limiting in the clinical trials, a 
subsequent meta-analysis206 of the clinical data confirmed 
that the majority of patients show evidence of liver dam-
age, though this responded well to steroid treatment.

In 2021, Thomsen et al.207 reported the expression of 
SMN1 in two infants that received Zolgensma but had 
died due to reasons unrelated to treatment. SMN1 ex-
pression was readily observed in the central nervous sys-
tem, but also in several peripheral organs, particularly 
the liver where expression was 2–3 orders of magnitude 
higher compared to the CNS. Although the reasons for 
AAV9 vector hepatotoxicity are not fully understood, 
the observation that it responded to steroid treatment 
suggests that it might be related to an immune response 
to the vector. Sadly, two patients recently treated with 
Zolgensma have died of acute liver failure. Both deaths 
occurred several weeks post-treatment, shortly after 
corticosteroid taper was initiated.208 Clinical trials with 
AAV vectors for other indications have also been marred 
by similar severe adverse events to those described for 
Zolgensma, including death at high vector doses. While 
Zolgensma has been used on more than 2300 people so 
far, these findings reiterate the need for better under-
standing and control of viral vector tropism and the 
associated immune response, to develop even safer 
treatments.

Just as the lessons learned from Luxturna are expected 
to greatly reduce the effort required to target retinopa-
thies, so will Zolgensma aid the development of other 
gene therapy solutions targeting the central nervous sys-
tem,209 thereby offering further evidence for the suitability 
of gene therapy to treat RDs. Moreover, as development 
and production costs fall with the adoption of these meth-
ods into mainstream clinical practice, we can expect treat-
ment costs to reduce significantly from their current high 
price tags.

6   |   CONCLUDING REMARKS AND 
FUTURE PROSPECTS

In this review, we have used specific examples of success-
ful clinical implementation to showcase what gene therapy 
can achieve and how it is already helping address the chal-
lenges of treating RDs. Around 50 years have passed since 
gene therapy was first mooted as a possible therapeutic av-
enue, illustrating how complicated it can be to implement 
a novel concept into clinical practice. Some of the licenced 
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therapies fit the original mould (gene supplementation to 
rescue a genetic defect), but many do not as they involve 
mechanistic pathways discovered and adapted more re-
cently, such as dsRNA interference, splicing modulation 
and exon skipping. Significant initial successes in treating 
SCID with ex vivo gene therapies built on the accumulated 
experience of allogeneic bone marrow transplantation, 
showed how existing clinical practice can be instrumental 
for implementation of novel technologies. Application of 
gene therapies to some forms of SCID paved the way to 
develop clinical gene therapies for other immunodeficien-
cies, and also additional disorders of the haematopoietic 
system like β-thalassaemia, thus demonstrating how ther-
apeutic strategies can be adapted relatively quickly to dif-
ferent diseases of the same tissue. Moreover, advances in 
ex vivo modification of haematopoietic cells have also led 
to unforeseen successes such as CAR-T cells. A similar ex-
pansion is underway with AAV9 vectors, which can cross 
the blood–brain barrier via intravascular delivery to treat 
inherited diseases of the CNS, as first demonstrated with 
Zolgensma for SMA.196–200 For those interested in tracking 
marketed gene (and cell) therapies across the world, the 
International Society for Stem Cell Research maintains an 
up-to-date map.210 Note, however, that this resource does 
not include oligonucleotide therapies, as they are not tech-
nically considered gene therapies by FDA or Advanced 
Therapeutic Medicinal Products by EMA.

The application of gene therapy technologies to the vac-
cine field has provided resounding successes in the fight 
against COVID-19, with mRNA-based and adenovirus-
based formulations being developed in record time and 
used to immunize a large part of the world population. 
These platforms are now being explored for other applica-
tions in both vaccinology and RD therapy, with very prom-
ising prospects.

Our discussion has focused on some of the clinical suc-
cesses of gene therapy. Consequently, we have not dwelt on 
other recent advances in gene therapy methods that are yet 
to reach full clinical implementation. However, to conclude 
our review we briefly cite some recent advances likely to 
drive the field forward. These include synthetic virology,211 
lipid nanoparticles212 and membrane-active peptides213 as 
key areas of intense research development. Similarly, AAV 
capsid engineering to alter tropism has seen much resource 
investment and is starting to deliver optimized AAV sero-
types for targeted therapies in vivo. However, to close this 
review it is clear that genome editing technologies are eas-
ily the most promising therapeutic strategies for the future. 
The accessible engineering of CRISPR/Cas enzymes, based 
on short synthetic RNAs, has facilitated enormously the 
introduction of defined genetic and epigenetic modifica-
tions in the genome214,215 through a variety of approaches 
including indel-mediated knockouts, homology-dependent 

repair, prime editing, base editing, and epigenetic regulation 
of transcription. Indeed, recent clinical trials with CRISPR 
in Transthyretin Amyloidosis,216 sickle cell disease and β-
thalassaemia217 offer very promising demonstrations of the 
technology and its exciting potential for patient benefit.
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